Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme.

Identifieur interne : 000707 ( Main/Exploration ); précédent : 000706; suivant : 000708

The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme.

Auteurs : Benoit Marteyn [France] ; Samer Sakr ; Sandrine Farci ; Mariette Bedhomme ; Solenne Chardonnet ; Paulette Decottignies ; Stéphane D. Lemaire ; Corinne Cassier-Chauvat ; Franck Chauvat

Source :

RBID : pubmed:23852862

Descripteurs français

English descriptors

Abstract

In a continuing effort to analyze the selectivity/redundancy of the three glutaredoxin (Grx) enzymes of the model cyanobacterium Synechocystis PCC6803, we have characterized an enzyme system that plays a crucial role in protection against two toxic metal pollutants, mercury and uranium. The present data show that Grx1 (Slr1562 in CyanoBase) selectively interacts with the presumptive mercuric reductase protein (Slr1849). This MerA enzyme plays a crucial role in cell defense against both mercuric and uranyl ions, in catalyzing their NADPH-driven reduction. Like MerA, Grx1 operates in cell protection against both mercury and uranium. The Grx1-MerA interaction requires cysteine 86 (C86) of Grx1 and C78 of MerA, which is critical for its reductase activity. MerA can be inhibited by glutathionylation and subsequently reactivated by Grx1, likely through deglutathionylation. The two Grx1 residues C31, which belongs to the redox active site (CX(2)C), and C86, which operates in MerA interactions, are both required for reactivation of MerA. These novel findings emphasize the role of glutaredoxins in tolerance to metal stress as well as the evolutionary conservation of the glutathionylation process, so far described mostly for eukaryotes.

DOI: 10.1128/JB.00272-13
PubMed: 23852862
PubMed Central: PMC3754753


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme.</title>
<author>
<name sortKey="Marteyn, Benoit" sort="Marteyn, Benoit" uniqKey="Marteyn B" first="Benoit" last="Marteyn">Benoit Marteyn</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris Sud, iBiTec-S, LBBC, Gif sur Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris Sud, iBiTec-S, LBBC, Gif sur Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sakr, Samer" sort="Sakr, Samer" uniqKey="Sakr S" first="Samer" last="Sakr">Samer Sakr</name>
</author>
<author>
<name sortKey="Farci, Sandrine" sort="Farci, Sandrine" uniqKey="Farci S" first="Sandrine" last="Farci">Sandrine Farci</name>
</author>
<author>
<name sortKey="Bedhomme, Mariette" sort="Bedhomme, Mariette" uniqKey="Bedhomme M" first="Mariette" last="Bedhomme">Mariette Bedhomme</name>
</author>
<author>
<name sortKey="Chardonnet, Solenne" sort="Chardonnet, Solenne" uniqKey="Chardonnet S" first="Solenne" last="Chardonnet">Solenne Chardonnet</name>
</author>
<author>
<name sortKey="Decottignies, Paulette" sort="Decottignies, Paulette" uniqKey="Decottignies P" first="Paulette" last="Decottignies">Paulette Decottignies</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
<author>
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
</author>
<author>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2013">2013</date>
<idno type="RBID">pubmed:23852862</idno>
<idno type="pmid">23852862</idno>
<idno type="doi">10.1128/JB.00272-13</idno>
<idno type="pmc">PMC3754753</idno>
<idno type="wicri:Area/Main/Corpus">000727</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000727</idno>
<idno type="wicri:Area/Main/Curation">000727</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000727</idno>
<idno type="wicri:Area/Main/Exploration">000727</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme.</title>
<author>
<name sortKey="Marteyn, Benoit" sort="Marteyn, Benoit" uniqKey="Marteyn B" first="Benoit" last="Marteyn">Benoit Marteyn</name>
<affiliation wicri:level="4">
<nlm:affiliation>UMR8221, CEA, CNRS, Université Paris Sud, iBiTec-S, LBBC, Gif sur Yvette, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>UMR8221, CEA, CNRS, Université Paris Sud, iBiTec-S, LBBC, Gif sur Yvette</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Île-de-France</region>
<settlement type="city">Gif-sur-Yvette</settlement>
</placeName>
<orgName type="university">Université Paris-Sud</orgName>
</affiliation>
</author>
<author>
<name sortKey="Sakr, Samer" sort="Sakr, Samer" uniqKey="Sakr S" first="Samer" last="Sakr">Samer Sakr</name>
</author>
<author>
<name sortKey="Farci, Sandrine" sort="Farci, Sandrine" uniqKey="Farci S" first="Sandrine" last="Farci">Sandrine Farci</name>
</author>
<author>
<name sortKey="Bedhomme, Mariette" sort="Bedhomme, Mariette" uniqKey="Bedhomme M" first="Mariette" last="Bedhomme">Mariette Bedhomme</name>
</author>
<author>
<name sortKey="Chardonnet, Solenne" sort="Chardonnet, Solenne" uniqKey="Chardonnet S" first="Solenne" last="Chardonnet">Solenne Chardonnet</name>
</author>
<author>
<name sortKey="Decottignies, Paulette" sort="Decottignies, Paulette" uniqKey="Decottignies P" first="Paulette" last="Decottignies">Paulette Decottignies</name>
</author>
<author>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
</author>
<author>
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
</author>
<author>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
</author>
</analytic>
<series>
<title level="j">Journal of bacteriology</title>
<idno type="eISSN">1098-5530</idno>
<imprint>
<date when="2013" type="published">2013</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Gene Expression Regulation, Bacterial (MeSH)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (metabolism)</term>
<term>Mercury (metabolism)</term>
<term>Mercury (toxicity)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Oxidoreductases (chemistry)</term>
<term>Oxidoreductases (genetics)</term>
<term>Oxidoreductases (metabolism)</term>
<term>Protein Interaction Domains and Motifs (MeSH)</term>
<term>Synechocystis (drug effects)</term>
<term>Synechocystis (enzymology)</term>
<term>Synechocystis (genetics)</term>
<term>Synechocystis (growth & development)</term>
<term>Two-Hybrid System Techniques (MeSH)</term>
<term>Uranium (metabolism)</term>
<term>Uranium (toxicity)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (métabolisme)</term>
<term>Mercure (métabolisme)</term>
<term>Mercure (toxicité)</term>
<term>Motifs et domaines d'intéraction protéique (MeSH)</term>
<term>Oxidoreductases (composition chimique)</term>
<term>Oxidoreductases (génétique)</term>
<term>Oxidoreductases (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Régulation de l'expression des gènes bactériens (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Synechocystis (croissance et développement)</term>
<term>Synechocystis (effets des médicaments et des substances chimiques)</term>
<term>Synechocystis (enzymologie)</term>
<term>Synechocystis (génétique)</term>
<term>Techniques de double hybride (MeSH)</term>
<term>Uranium (métabolisme)</term>
<term>Uranium (toxicité)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Glutaredoxins</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glutaredoxins</term>
<term>Mercury</term>
<term>Oxidoreductases</term>
<term>Uranium</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="toxicity" xml:lang="en">
<term>Mercury</term>
<term>Uranium</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Oxidoreductases</term>
<term>Synechocystis</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Mercure</term>
<term>Oxidoreductases</term>
<term>Uranium</term>
</keywords>
<keywords scheme="MESH" qualifier="toxicité" xml:lang="fr">
<term>Mercure</term>
<term>Uranium</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Expression Regulation, Bacterial</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Oxidation-Reduction</term>
<term>Protein Interaction Domains and Motifs</term>
<term>Two-Hybrid System Techniques</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Motifs et domaines d'intéraction protéique</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes bactériens</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Techniques de double hybride</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">In a continuing effort to analyze the selectivity/redundancy of the three glutaredoxin (Grx) enzymes of the model cyanobacterium Synechocystis PCC6803, we have characterized an enzyme system that plays a crucial role in protection against two toxic metal pollutants, mercury and uranium. The present data show that Grx1 (Slr1562 in CyanoBase) selectively interacts with the presumptive mercuric reductase protein (Slr1849). This MerA enzyme plays a crucial role in cell defense against both mercuric and uranyl ions, in catalyzing their NADPH-driven reduction. Like MerA, Grx1 operates in cell protection against both mercury and uranium. The Grx1-MerA interaction requires cysteine 86 (C86) of Grx1 and C78 of MerA, which is critical for its reductase activity. MerA can be inhibited by glutathionylation and subsequently reactivated by Grx1, likely through deglutathionylation. The two Grx1 residues C31, which belongs to the redox active site (CX(2)C), and C86, which operates in MerA interactions, are both required for reactivation of MerA. These novel findings emphasize the role of glutaredoxins in tolerance to metal stress as well as the evolutionary conservation of the glutathionylation process, so far described mostly for eukaryotes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">23852862</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>11</Month>
<Day>05</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1098-5530</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>195</Volume>
<Issue>18</Issue>
<PubDate>
<Year>2013</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Journal of bacteriology</Title>
<ISOAbbreviation>J Bacteriol</ISOAbbreviation>
</Journal>
<ArticleTitle>The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme.</ArticleTitle>
<Pagination>
<MedlinePgn>4138-45</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1128/JB.00272-13</ELocationID>
<Abstract>
<AbstractText>In a continuing effort to analyze the selectivity/redundancy of the three glutaredoxin (Grx) enzymes of the model cyanobacterium Synechocystis PCC6803, we have characterized an enzyme system that plays a crucial role in protection against two toxic metal pollutants, mercury and uranium. The present data show that Grx1 (Slr1562 in CyanoBase) selectively interacts with the presumptive mercuric reductase protein (Slr1849). This MerA enzyme plays a crucial role in cell defense against both mercuric and uranyl ions, in catalyzing their NADPH-driven reduction. Like MerA, Grx1 operates in cell protection against both mercury and uranium. The Grx1-MerA interaction requires cysteine 86 (C86) of Grx1 and C78 of MerA, which is critical for its reductase activity. MerA can be inhibited by glutathionylation and subsequently reactivated by Grx1, likely through deglutathionylation. The two Grx1 residues C31, which belongs to the redox active site (CX(2)C), and C86, which operates in MerA interactions, are both required for reactivation of MerA. These novel findings emphasize the role of glutaredoxins in tolerance to metal stress as well as the evolutionary conservation of the glutathionylation process, so far described mostly for eukaryotes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Marteyn</LastName>
<ForeName>Benoit</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>UMR8221, CEA, CNRS, Université Paris Sud, iBiTec-S, LBBC, Gif sur Yvette, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sakr</LastName>
<ForeName>Samer</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Farci</LastName>
<ForeName>Sandrine</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bedhomme</LastName>
<ForeName>Mariette</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chardonnet</LastName>
<ForeName>Solenne</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Decottignies</LastName>
<ForeName>Paulette</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lemaire</LastName>
<ForeName>Stéphane D</ForeName>
<Initials>SD</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Cassier-Chauvat</LastName>
<ForeName>Corinne</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chauvat</LastName>
<ForeName>Franck</ForeName>
<Initials>F</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2013</Year>
<Month>07</Month>
<Day>12</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Bacteriol</MedlineTA>
<NlmUniqueID>2985120R</NlmUniqueID>
<ISSNLinking>0021-9193</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4OC371KSTK</RegistryNumber>
<NameOfSubstance UI="D014501">Uranium</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.-</RegistryNumber>
<NameOfSubstance UI="D010088">Oxidoreductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.16.-</RegistryNumber>
<NameOfSubstance UI="C021551">mercuric reductase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>FXS1BY2PGL</RegistryNumber>
<NameOfSubstance UI="D008628">Mercury</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D015964" MajorTopicYN="Y">Gene Expression Regulation, Bacterial</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="Y">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008628" MajorTopicYN="N">Mercury</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010088" MajorTopicYN="N">Oxidoreductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054730" MajorTopicYN="N">Protein Interaction Domains and Motifs</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046939" MajorTopicYN="N">Synechocystis</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020798" MajorTopicYN="N">Two-Hybrid System Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014501" MajorTopicYN="N">Uranium</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000633" MajorTopicYN="N">toxicity</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2013</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2013</Year>
<Month>7</Month>
<Day>16</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>11</Month>
<Day>6</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">23852862</ArticleId>
<ArticleId IdType="pii">JB.00272-13</ArticleId>
<ArticleId IdType="doi">10.1128/JB.00272-13</ArticleId>
<ArticleId IdType="pmc">PMC3754753</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Mol Microbiol. 2004 Jul;53(1):65-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15225304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1982 Mar 10;257(5):2498-503</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6277900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2010 Jan;35(1):43-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19811920</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Oct;74(2):409-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19737354</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Ind Microbiol Biotechnol. 2005 Dec;32(11-12):587-605</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16133099</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1993 Nov;23(4):905-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8251644</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Microbiol Biotechnol. 2011 Nov;92(4):697-708</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21983706</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2007 Jan;73(1):243-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17071784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Pharmacol. 2007 Aug;7(4):381-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17662654</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Jan;71(2):520-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19040637</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jul 11;278(28):25745-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12730244</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2003 Dec;185(23):6780-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14617642</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2004 Feb 27;279(9):7537-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14676218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2006 Sep;89(2-3):225-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17089213</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 1985 Nov;50(5):1296-300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16346934</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Microbiol. 1994 Mar;28(3):145-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7764699</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 1998 May;28(4):813-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9643548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jun 20;278(25):22325-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682041</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2009 Jun;191(11):3534-43</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19304854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Gene. 1991 Jul 15;103(1):17-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1652541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2007 Dec 25;46(51):15018-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18044966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1989 Jun;171(6):3449-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2498291</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2012 Mar 15;16(6):567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22053845</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Toxicol. 2006 Sep;36(8):609-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16973445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Protein Pept Sci. 2010 Dec;11(8):659-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21235502</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2009 Feb;34(2):85-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19135374</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2006;60:149-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16704344</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 2012 Sep;1823(9):1491-508</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2009 Dec 25;284(52):36282-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19847013</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Dec;179(23):7219-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9393683</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2006 May-Jun;8(5-6):753-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16771667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Mol Life Sci. 2009 Aug;66(15):2539-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19506802</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2013 May 1;18(13):1654-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23231445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Apr 4;283(14):8868-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18216016</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 May 12;95(10):5752-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9576956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antioxid Redox Signal. 2004 Feb;6(1):63-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14713336</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Île-de-France</li>
</region>
<settlement>
<li>Gif-sur-Yvette</li>
</settlement>
<orgName>
<li>Université Paris-Sud</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bedhomme, Mariette" sort="Bedhomme, Mariette" uniqKey="Bedhomme M" first="Mariette" last="Bedhomme">Mariette Bedhomme</name>
<name sortKey="Cassier Chauvat, Corinne" sort="Cassier Chauvat, Corinne" uniqKey="Cassier Chauvat C" first="Corinne" last="Cassier-Chauvat">Corinne Cassier-Chauvat</name>
<name sortKey="Chardonnet, Solenne" sort="Chardonnet, Solenne" uniqKey="Chardonnet S" first="Solenne" last="Chardonnet">Solenne Chardonnet</name>
<name sortKey="Chauvat, Franck" sort="Chauvat, Franck" uniqKey="Chauvat F" first="Franck" last="Chauvat">Franck Chauvat</name>
<name sortKey="Decottignies, Paulette" sort="Decottignies, Paulette" uniqKey="Decottignies P" first="Paulette" last="Decottignies">Paulette Decottignies</name>
<name sortKey="Farci, Sandrine" sort="Farci, Sandrine" uniqKey="Farci S" first="Sandrine" last="Farci">Sandrine Farci</name>
<name sortKey="Lemaire, Stephane D" sort="Lemaire, Stephane D" uniqKey="Lemaire S" first="Stéphane D" last="Lemaire">Stéphane D. Lemaire</name>
<name sortKey="Sakr, Samer" sort="Sakr, Samer" uniqKey="Sakr S" first="Samer" last="Sakr">Samer Sakr</name>
</noCountry>
<country name="France">
<region name="Île-de-France">
<name sortKey="Marteyn, Benoit" sort="Marteyn, Benoit" uniqKey="Marteyn B" first="Benoit" last="Marteyn">Benoit Marteyn</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000707 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000707 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:23852862
   |texte=   The Synechocystis PCC6803 MerA-like enzyme operates in the reduction of both mercury and uranium under the control of the glutaredoxin 1 enzyme.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:23852862" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020